Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Anwendungsfall: bauliche Zustandsbewertung der Tunnelinnenschale

Juli 2025

Projektpartner

Lehrstuhl für Informatik im Bauwesen Ansprechpartner:

Prof. Dr.-Ing. Markus König (Projektleitung)

Lehrstuhl für Tunnelbau, Leitungsbau und Baubetrieb

Ansprechpartner:

Prof. Dr.-Ing. Markus Thewes

Bundesanstalt für Straßen- und Verkehrswesen – Deutschland

Ansprechpartner: Marius Nono Tamo

BUNG Ingenieure AG

Ansprechpartner:

Karl Hanke

Elevait GmbH & Co. KG

Ansprechpartner:

Laura Stern

LocLab Consulting GmbH

Ansprechpartner:

Verica Eric

1 Einleitung

Zuordnung des Anwendungsfalles zu Projekt- bzw. Lebenszyklusphasen

Der Anwendungsfall wird für die Betriebs- und die Erhaltungsphase von Straßentunneln umgesetzt (siehe Tabelle 1).

Tabelle 1: Zuordnung des Anwendungsfalls in der Lebenszyklusphase des Straßentunnels

AwF Zustandserfassung und -bewertung					
UAwF bauliche Zustandsbewertung der Tunnelinnenschale					
Bedarf	Planen	Bauen	Betrieb und Erhaltung		
	Grundlagenermittlung	Bauvorbereitung	Betrieb		
	Vorplanung	Bauausführung	Erhaltung		
	Entwurfsplanung	Bau- und Projektdokumentation	Verkehrsmanagement		
	Genehmigungsplanung		Fachdatenmanagement		
	Ausführungsplanung		Umwelt		
	Unterstützung der Vergabe		Haushaltsangelegenheiten		
	Projektüberwachung				

2 Definition

Wie ist der Anwendungsfall definiert?

Der Betrieb von Straßentunneln ist durch hohe Anforderungen an die Sicherheit und Verfügbarkeit des Bauwerks gekennzeichnet. Insbesondere die Zustandsüberwachung und Instandhaltung von Straßentunneln stellt sich als Herausforderung dar. Die Tunnelinnenschale, die einer Vielzahl von Umwelteinflüssen und Verkehrsbelastungen ausgesetzt ist, erfordert regelmäßige und präzise Inspektionen und Analysen, um etwaige Schäden frühzeitig zu erkennen und entsprechende Maßnahmen einleiten zu können. Die bauliche Zustandsbewertung umfasst die systematische Analyse und Bewertung des aktuellen Zustands von Straßentunneln mithilfe digitaler Technologien. Hierbei wird zwischen den unterschiedlichen Schadenformen an der Tunnelinnenschale differenziert.

3 Nutzen

Welcher Mehrwert ist durch die Umsetzung des Anwendungsfalls zu erwarten?

- Die Prognose der Weiterentwicklung von Schäden in der Tunnelinnenschale
- Im Vergleich zum aktuellen Stand effizientere Planung der Instandsetzungsarbeiten basierend auf Dringlichkeit und Ausmaß der Schäden
- Erhöhte Verfügbarkeit des Bauwerks
- Erleichterte durchgehende Überwachung des Bauwerkszustands
- Verbesserung der Verkehrssicherheit durch vorausschauende Zustandsbewertung der Tunnelinnenschale
- Verbesserung der Maßnahmenempfehlungen zur Lebenszykluskostenoptimierung durch bessere Datengrundlage für die Betriebs- und Erhaltungsphase

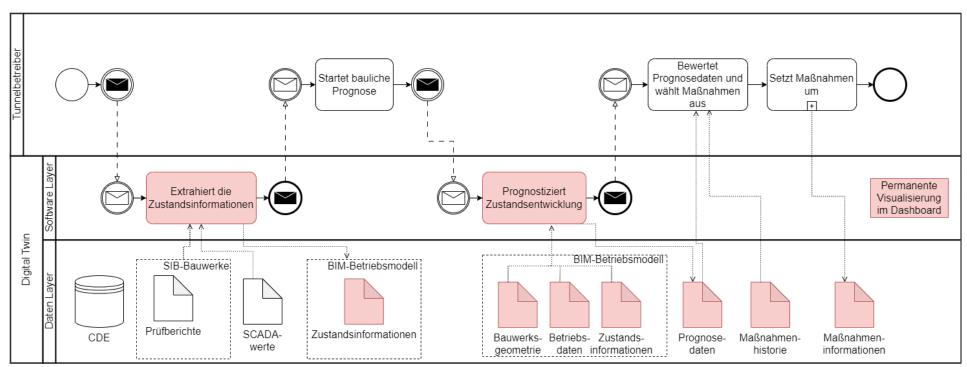
4 Voraussetzungen

Was ist für die Umsetzung der digitalen Prozessabbildung und Datenerfassung im digitalen Zwilling erforderlich?

- Vordefinierte und im digitalen Zwilling abgelegte Bewertungskriterien und -skalen für die Bewertung des baulichen Zustandes (gemäß RI-EBW-PRÜF)
- Gemeinsame Datenumgebung Common Data Environment (CDE)
- Verknüpfung zwischen der SIB-Bauwerke und dem digitalen Daten Layer
- Vorhandener digitaler Zwilling

5 Eingangs- und Ausgangsdaten

Welche Eingangs- und Ausgangsdaten sind für den Anwendungsfall relevant?


Tabelle 2: Eingangs- und Ausgangsdaten für den Anwendungsfall bauliche Zustandsbewertung der Tunnelinnenschale

Eingangsdaten	Ausgangsdaten	
 Verortete Prüfdaten Aufbereitete und intuitiv dargestellte Daten des baulichen Zustandes Temperatur- und Luftfeuchtigkeitsdaten aus SCADA-System Maßnahmenhistorie 	 Historischer Vergleich der Daten Soll-Ist-Vergleich des baulichen Zustandes, Zustandsnote Prognose der Schadensentwicklung Maßnahmenempfehlung/Maßnahmenhistorie Aktualisiertes BIM-Betriebsmodell 	

6 Prozessdiagramm

Das hier abgebildete Prozessdiagramm gibt einen Überblick zum Ablauf des Anwendungsfalls *bauliche Zustandsbewertung der Tunnelinnenschale*. Die Darstellung ist auf die Prozessschritte und Umsetzungsdetails beschränkt.

7 Ansprechpartner Tunnelbetrieb

- Götz Vollmann Goetz.vollmann@ruhr-uni-bochum.de
- Zuzan Azad Zuzan.azad@ruhr-uni-bochum.de

